Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rapid Identification of Chemoresistance Mechanisms Using Yeast DNA Mismatch Repair Mutants.

Identifieur interne : 000C30 ( Main/Exploration ); précédent : 000C29; suivant : 000C31

Rapid Identification of Chemoresistance Mechanisms Using Yeast DNA Mismatch Repair Mutants.

Auteurs : Irene Ojini [États-Unis] ; Alison Gammie [États-Unis]

Source :

RBID : pubmed:26199284

Descripteurs français

English descriptors

Abstract

Resistance to cancer therapy is a major obstacle in the long-term treatment of cancer. A greater understanding of drug resistance mechanisms will ultimately lead to the development of effective therapeutic strategies to prevent resistance from occurring. Here, we exploit the mutator phenotype of mismatch repair defective yeast cells combined with whole genome sequencing to identify drug resistance mutations in key pathways involved in the development of chemoresistance. The utility of this approach was demonstrated via the identification of the known CAN1 and TOP1 resistance targets for two compounds, canavanine and camptothecin, respectively. We have also experimentally validated the plasma membrane transporter HNM1 as the primary drug resistance target of mechlorethamine. Furthermore, the sequencing of mitoxantrone-resistant strains identified inactivating mutations within IPT1, a gene encoding inositolphosphotransferase, an enzyme involved in sphingolipid biosynthesis. In the case of bactobolin, a promising anticancer drug, the endocytosis pathway was identified as the drug resistance target responsible for conferring resistance. Finally, we show that that rapamycin, an mTOR inhibitor previously shown to alter the fitness of the ipt1 mutant, can effectively prevent the formation of mitoxantrone resistance. The rapid and robust nature of these techniques, using Saccharomyces cerevisiae as a model organism, should accelerate the identification of drug resistance targets and guide the development of novel therapeutic combination strategies to prevent the development of chemoresistance in various cancers.

DOI: 10.1534/g3.115.020560
PubMed: 26199284
PubMed Central: PMC4555229


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rapid Identification of Chemoresistance Mechanisms Using Yeast DNA Mismatch Repair Mutants.</title>
<author>
<name sortKey="Ojini, Irene" sort="Ojini, Irene" uniqKey="Ojini I" first="Irene" last="Ojini">Irene Ojini</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">New Jersey</region>
</placeName>
<wicri:cityArea>Department of Molecular Biology, Princeton University, Princeton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gammie, Alison" sort="Gammie, Alison" uniqKey="Gammie A" first="Alison" last="Gammie">Alison Gammie</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544 agammie@princeton.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, Princeton University, Princeton</wicri:regionArea>
<orgName type="university">Université de Princeton</orgName>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26199284</idno>
<idno type="pmid">26199284</idno>
<idno type="doi">10.1534/g3.115.020560</idno>
<idno type="pmc">PMC4555229</idno>
<idno type="wicri:Area/Main/Corpus">000C18</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C18</idno>
<idno type="wicri:Area/Main/Curation">000C18</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C18</idno>
<idno type="wicri:Area/Main/Exploration">000C18</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rapid Identification of Chemoresistance Mechanisms Using Yeast DNA Mismatch Repair Mutants.</title>
<author>
<name sortKey="Ojini, Irene" sort="Ojini, Irene" uniqKey="Ojini I" first="Irene" last="Ojini">Irene Ojini</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">New Jersey</region>
</placeName>
<wicri:cityArea>Department of Molecular Biology, Princeton University, Princeton</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gammie, Alison" sort="Gammie, Alison" uniqKey="Gammie A" first="Alison" last="Gammie">Alison Gammie</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544 agammie@princeton.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, Princeton University, Princeton</wicri:regionArea>
<orgName type="university">Université de Princeton</orgName>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">G3 (Bethesda, Md.)</title>
<idno type="eISSN">2160-1836</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Benzopyrans (pharmacology)</term>
<term>DNA Mismatch Repair (MeSH)</term>
<term>Drug Discovery (MeSH)</term>
<term>Drug Resistance, Neoplasm (MeSH)</term>
<term>Drug Screening Assays, Antitumor (MeSH)</term>
<term>Endocytosis (drug effects)</term>
<term>Endocytosis (genetics)</term>
<term>Genome, Fungal (MeSH)</term>
<term>Genomics (methods)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Mechlorethamine (pharmacology)</term>
<term>Mutation (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Small Molecule Libraries (MeSH)</term>
<term>Sphingolipids (biosynthesis)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Benzopyranes (pharmacologie)</term>
<term>Bibliothèques de petites molécules (MeSH)</term>
<term>Chlorméthine (pharmacologie)</term>
<term>Découverte de médicament (MeSH)</term>
<term>Endocytose (effets des médicaments et des substances chimiques)</term>
<term>Endocytose (génétique)</term>
<term>Génome fongique (MeSH)</term>
<term>Génomique (méthodes)</term>
<term>Mutation (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Réparation de mésappariement de l'ADN (MeSH)</term>
<term>Résistance aux médicaments antinéoplasiques (MeSH)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sphingolipides (biosynthèse)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
<term>Tests de criblage d'agents antitumoraux (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Sphingolipids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Benzopyrans</term>
<term>Mechlorethamine</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Sphingolipides</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Endocytosis</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Endocytose</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Endocytosis</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Endocytose</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Génomique</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Benzopyranes</term>
<term>Chlorméthine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>DNA Mismatch Repair</term>
<term>Drug Discovery</term>
<term>Drug Resistance, Neoplasm</term>
<term>Drug Screening Assays, Antitumor</term>
<term>Genome, Fungal</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Mutation</term>
<term>Small Molecule Libraries</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Bibliothèques de petites molécules</term>
<term>Découverte de médicament</term>
<term>Génome fongique</term>
<term>Mutation</term>
<term>Réparation de mésappariement de l'ADN</term>
<term>Résistance aux médicaments antinéoplasiques</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Tests de criblage d'agents antitumoraux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Resistance to cancer therapy is a major obstacle in the long-term treatment of cancer. A greater understanding of drug resistance mechanisms will ultimately lead to the development of effective therapeutic strategies to prevent resistance from occurring. Here, we exploit the mutator phenotype of mismatch repair defective yeast cells combined with whole genome sequencing to identify drug resistance mutations in key pathways involved in the development of chemoresistance. The utility of this approach was demonstrated via the identification of the known CAN1 and TOP1 resistance targets for two compounds, canavanine and camptothecin, respectively. We have also experimentally validated the plasma membrane transporter HNM1 as the primary drug resistance target of mechlorethamine. Furthermore, the sequencing of mitoxantrone-resistant strains identified inactivating mutations within IPT1, a gene encoding inositolphosphotransferase, an enzyme involved in sphingolipid biosynthesis. In the case of bactobolin, a promising anticancer drug, the endocytosis pathway was identified as the drug resistance target responsible for conferring resistance. Finally, we show that that rapamycin, an mTOR inhibitor previously shown to alter the fitness of the ipt1 mutant, can effectively prevent the formation of mitoxantrone resistance. The rapid and robust nature of these techniques, using Saccharomyces cerevisiae as a model organism, should accelerate the identification of drug resistance targets and guide the development of novel therapeutic combination strategies to prevent the development of chemoresistance in various cancers. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26199284</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2160-1836</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>G3 (Bethesda, Md.)</Title>
<ISOAbbreviation>G3 (Bethesda)</ISOAbbreviation>
</Journal>
<ArticleTitle>Rapid Identification of Chemoresistance Mechanisms Using Yeast DNA Mismatch Repair Mutants.</ArticleTitle>
<Pagination>
<MedlinePgn>1925-35</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/g3.115.020560</ELocationID>
<Abstract>
<AbstractText>Resistance to cancer therapy is a major obstacle in the long-term treatment of cancer. A greater understanding of drug resistance mechanisms will ultimately lead to the development of effective therapeutic strategies to prevent resistance from occurring. Here, we exploit the mutator phenotype of mismatch repair defective yeast cells combined with whole genome sequencing to identify drug resistance mutations in key pathways involved in the development of chemoresistance. The utility of this approach was demonstrated via the identification of the known CAN1 and TOP1 resistance targets for two compounds, canavanine and camptothecin, respectively. We have also experimentally validated the plasma membrane transporter HNM1 as the primary drug resistance target of mechlorethamine. Furthermore, the sequencing of mitoxantrone-resistant strains identified inactivating mutations within IPT1, a gene encoding inositolphosphotransferase, an enzyme involved in sphingolipid biosynthesis. In the case of bactobolin, a promising anticancer drug, the endocytosis pathway was identified as the drug resistance target responsible for conferring resistance. Finally, we show that that rapamycin, an mTOR inhibitor previously shown to alter the fitness of the ipt1 mutant, can effectively prevent the formation of mitoxantrone resistance. The rapid and robust nature of these techniques, using Saccharomyces cerevisiae as a model organism, should accelerate the identification of drug resistance targets and guide the development of novel therapeutic combination strategies to prevent the development of chemoresistance in various cancers. </AbstractText>
<CopyrightInformation>Copyright © 2015 Ojini and Gammie.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ojini</LastName>
<ForeName>Irene</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gammie</LastName>
<ForeName>Alison</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544 agammie@princeton.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM046406</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM037739</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 CA072720</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30CA072720</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50 GM071508</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 HG003284</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>G3 (Bethesda)</MedlineTA>
<NlmUniqueID>101566598</NlmUniqueID>
<ISSNLinking>2160-1836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001578">Benzopyrans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054852">Small Molecule Libraries</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013107">Sphingolipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>50D9XSG0VR</RegistryNumber>
<NameOfSubstance UI="D008466">Mechlorethamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72615-20-4</RegistryNumber>
<NameOfSubstance UI="C025268">bactobolin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001578" MajorTopicYN="N">Benzopyrans</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053843" MajorTopicYN="Y">DNA Mismatch Repair</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055808" MajorTopicYN="N">Drug Discovery</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019008" MajorTopicYN="Y">Drug Resistance, Neoplasm</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004354" MajorTopicYN="Y">Drug Screening Assays, Antitumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004705" MajorTopicYN="N">Endocytosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="N">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008466" MajorTopicYN="N">Mechlorethamine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="Y">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054852" MajorTopicYN="N">Small Molecule Libraries</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013107" MajorTopicYN="N">Sphingolipids</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DNA mismatch repair</Keyword>
<Keyword MajorTopicYN="N">cancer</Keyword>
<Keyword MajorTopicYN="N">drug resistance</Keyword>
<Keyword MajorTopicYN="N">mutator</Keyword>
<Keyword MajorTopicYN="N">whole genome sequencing</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26199284</ArticleId>
<ArticleId IdType="pii">g3.115.020560</ArticleId>
<ArticleId IdType="doi">10.1534/g3.115.020560</ArticleId>
<ArticleId IdType="pmc">PMC4555229</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 1999 Mar;21(3):278-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10080179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2007 Dec;32(12):555-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17980602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Haematol. 1998 Jan;100(1):142-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9450803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Endocrinol. 1999 Sep 10;155(1-2):135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10580846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Mol Med. 2003 Feb;3(1):49-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12558074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jpn J Cancer Res. 1999 Feb;90(2):219-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10189893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2005 Jul 1;65(13):5890-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Aug 11;126(3):611-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16901791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharm. 2011 Dec 5;8(6):2094-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21815657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 17;270(46):27531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1990 Sep 15;50(18):5813-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2168281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Mar 24;269(3):767-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10720490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med Today. 2000 Jan;6(1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10637570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 18;320(5874):362-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18420932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Oncol. 2013 Jan 18;2:212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23346549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1988 May 1;48(9):2454-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3356009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol C. 1989;93(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2567220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2006 Oct;6(10):789-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16990856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Jul 7;102(1):109-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10929718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Oncol. 1995 May;13(5):1170-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7537800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2002 Nov 1;62(21):6141-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2004 Feb 1;64(3):1102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2004 Jun 1;64(11):3940-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Med. 2002;53:615-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11818492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):793-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1992 Sep 15;80(6):1528-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1381629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 2001 Jun 1;181(3):153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11420602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Database (Oxford). 2012;2012:bar062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Apr 1;329(1):64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15721274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2003 Jul;3(7):502-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12835670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cancer Res Clin Oncol. 1999;125(3-4):156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10235469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 2001 Aug 15;93(4):571-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11477562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Oncol. 2005 Apr;16(4):525-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Cancer. 2004 Feb 23;90(4):917-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14970874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2012 Jan;22(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22018597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2003 May-Jun;19(3):1061-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12790681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(3):R30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20226027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Jan 31;34(4):1439-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7827092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2013 Sep;3(9):1453-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23821616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 1998 Jan;4(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9516945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2003;57:579-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14527292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1979 Jan;91(1):35-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">372045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1993 Dec;241(5-6):680-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8264542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2008 Feb;18(1):73-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18325754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Oct 1;1400(1-3):173-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9748560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 9;116(1):121-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2007 Jul;12(1):9-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17613433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Pharmacol J New Drugs. 1970 Mar-Apr;10(2):110-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4906539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Nov 21;272(47):29620-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9368028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Med. 2005;111:127-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15911977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jan;22(1):62-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14661025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2004 Oct 15;10(20):7031-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15501983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4525-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15070751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2004;107(3-4):146-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15467360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Oct 25;268(30):22322-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8226741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 1997 Oct;3(10):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9815561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2007 Nov;7(11):834-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17957189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 1980 Sep;33(9):1054-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7440410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Feb 13;314(3):844-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14741713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2003 Aug;64(2):259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Natl Cancer Inst. 1997 Oct 15;89(20):1537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9337351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1979 Dec;8(1):121-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">395029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biol. 1977 Jun;52(2):155-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">331385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7481-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9207117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1976 Oct 1;194(4260):23-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">959840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2002 Nov;62(5):1154-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12391279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2008 Aug;4(8):498-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18622389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2005;74:681-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15952900</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
<settlement>
<li>Princeton (New Jersey)</li>
</settlement>
<orgName>
<li>Université de Princeton</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Ojini, Irene" sort="Ojini, Irene" uniqKey="Ojini I" first="Irene" last="Ojini">Irene Ojini</name>
</region>
<name sortKey="Gammie, Alison" sort="Gammie, Alison" uniqKey="Gammie A" first="Alison" last="Gammie">Alison Gammie</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26199284
   |texte=   Rapid Identification of Chemoresistance Mechanisms Using Yeast DNA Mismatch Repair Mutants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26199284" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020